

Safety Clutches

Overload Protection using Torque Limitation

IMG.402.V08.EN

We safeguard the movements of this world

The Christian Mayr mill-construction business - founded in 1897.

Specialists for power transmission for more than a century

mayr[®] power transmission is one of the most traditional and yet highly innovative German companies in the field of power transmission. From modest beginnings in the year 1897, the family enterprise from the Allgäu region has developed into world market leaders. Today, 550 employees work at the headquarters in Mauerstetten; more than 1000 employees work for the company worldwide.

Unsurpassed - our standard range

mayr[®] power transmission offers an extensive variety of torque limiters, safety brakes, backlash-free shaft misalignment compensation couplings and high-quality DC drives. Also when it comes to customer-specific requirements, the company possesses the expertise to develop customized and economical solutions. This is why numerous renowned machine manufacturers trust in holistic solutions by *mayr*[®] power transmission.

Available worldwide

With eight subsidiaries in Germany, sales offices in the USA, France, Great Britain, Italy, Singapore and Switzerland as well as 36 additional country representatives, *mayr*[®] is available in all important industrial areas, guaranteeing optimum customer service around the globe.

Tradition and innovation – the best of both worlds

Tradition and innovation do not contradict each other - on the contrary. They are the two supporting pillars which have guaranteed stability and reliability for generations. Longterm stability, independence as well as a good reputation and satisfied customers are important values for a family enterprise rich in tradition.

Therefore, we place emphasis on:

- Tested product quality
- Optimum customer service
- Comprehensive know-how
- Global presence
- Successful innovations and
- Effective cost management

Following our own objective of always offering our customers the technologically most advanced and economical solution, we have been able to gain the trust of many leading industrial companies from all branches and from all over the world as a reliable partner.

Place your trust in our know-how and our more than 50 years of experience in torque limiters, safety brakes and shaft couplings.

Tested quality and reliability

mayr[®] products are subject to meticulous quality inspections. These include quality assurance measures during the construction process and a comprehensive final inspection. Only the best, tested quality leaves our factory. All products are rigorously tested on calibrated test stands, and adjusted precisely to the requested values. An electronic database in which the measurements values are archived together with the associated serial numbers guarantees 100 % traceability. On request, we confirm the product characteristics with a test protocol.

The certification of our quality management according to DIN EN ISO 9001:2000 confirms the quality-consciousness of our colleagues at every level of the company.

Never compromise on safety

We do not make compromises where safety is concerned. Only top products of a perfect quality guarantee that no people are injured or machines damaged in case of operational malfunctions, collisions and other hazardous situations. The safety of your employees and machines is our motivation to always provide the best and most reliable clutches, couplings or brakes.

mayr[®] power transmission holds numerous ground-breaking patents, and are the global market or technological leaders for

- application-optimised safety brakes, for example for passenger elevators, stage technology and gravity loaded axes
- torque limiters to protect against expensive overload damage and production losses and
- backlash-free servo couplings.

4

No overload protection means a high risk of damage

Situation

The input and output sides are connected firmly to each other (material-locking) in the drive line. There are no frictionally-locking or positive-locking connections which could give way without destruction on overload. Current changes in the motor cannot be monitored or processed.

Speed and Torque Paths

After a collision, the torque increases very rapidly to values which can be much higher than the operating torque. This overload leads to breaks in the drive line. The motor continues to run; the machine speed falls to 0.

Risk of Damage

Collisions without overload protection usually lead to the machine being completely damaged. The weakest link in the drive line breaks. The machine is no longer operational and downtime will last until the repairs have been carried out. 0

Heavy, solid and slowrunning constructions with high safety factors are necessary in order to keep collision factors as low as possible.

Costs

- Expensive replacement parts
- Complicated repairs
- Long downtimes

Perfect overload protection with EAS[®]-clutches

Situation

EAS®-clutches combine input and output-sides using positive locking and limit the torque accurately to the set value. These clutches work with an extremely high setting and repeating accuracy.

Speed and Torque Paths

Risk of Damage

The high accuracy and Totally damaged exact torque limitation mean that the drive line is not damaged. Partly All components remain damaged within the elastic due to plastic deformation range. deformation Elastic deformation 0 Dimensioning Small and light constructions are 3 possible due to accurate 2 torque limiting and exact predictions on component load. Costs Costs incurred due to

damage or wear are no longer to be expected. After a short downtime to remove the overload, the system can be re-started.

Why is it worth using EAS[®]-safety clutches?

Advantages for the Machine Manufacturer

Safety clutches ensure that the load on the components does not exceed the permitted values due to exact torque limitation.

This means that the modern demands on the machine construction can be fulfilled without risk.

- □ Reduction of constructional safety factors
- Optimum machine dimensions
- □ Low mass moment of inertia
- □ Smaller drive motors and gearbox
- Material and cost reductions
- □ High rigidity and vibration-free transmission

Advantages for Productional Operation

No machine is safe from collisions. They occur due to incorrect operation, control software and hardware malfunctions or ambient influences such as foreign objects. Safety clutches provide reliable protection and ensure:

- □ Low operational costs
- □ Minimum repair time expenditure
- □ High system availability
- □ High productivity
- Punctual production
- □ Good delivery image for customers

Classification of <i>mayr</i> [®] -safety clutches 8-24												
	Torque limiting	Force limiting	Frictionally-locking	Positive-locking	Magnetic	Ratchetting	Disengaging	Pneum. switchable + controllable	Electr. switchable + controllable	Rustproof	Rustproof and sealed	Catalogue page
Load holding safety clutches												0
	X		X	~								0
EAS ⁻ -Compact ⁻ - / EAS ⁻ -torque sensor	X			X	~~~~					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	9
Load separating safety clutch					X					X	X	10
EAS [®] -Compact [®] / EAS [®] -NC	x			х		х						11
EAS [®] -Compact [®] rustproof	x			x		x				x	x	12
EAS [®] -smartic [®]	x			x		x						13
EAS [®] -HTL	x			x		x	x					14
EAS®-HSC	x			х			х					15
EAS [®] -Compact [®] overload clutch	x			х			х					16
EAS [®] -elements	x			x			x					17
EAS [®] -HT	x			x			х					18
EAS®-HSE	x			x			x					20
EAS [®] -dutytorque	x			x			x					21
EAS®-Sp	x			x			x	x				22
EAS®-Sm / EAS®-Zr	x			x			x		x			23
EAS [®] -axial		x		x			x					24
Limit Switch												25

Load holding safety clutches

Load separating safety clutches

Example 2: Torque and speed paths of a load separating ratchetting safety clutch

7

ROBA[®]-slip hub the load holding frictionally-locking safety clutch

Performance Characteristics

- Slipping on overload. The device can continue operation immediately after elimination of the overload
- Torque transmission due to frictional locking
- Simple to install and handle
- Torque can be adjusted easily and steplessly using adjustment tables
- High-quality friction materials provide lowestpossible wear
- Low friction value tolerance due to optimized construction and materials
- Excellent repeat accuracy

 $\mathsf{ROBA}^{\circledast}\text{-slip}$ hub for ensuring safety for conveyor belts in a bottle-filling plant

Designs

- Standard design for narrow drive elements e.g. single-row chain sprockets
- ROBA[®]-max for very wide drive elements and for elements with a small diameter
- With rustproof friction linings for operation outside, in humid conditions or longer downtimes
- □ With a clamping hub for fast, cost-saving installation
- With a needle bearing for drive elements with high radial loads, a high slipping frequency and high demands on the shaft run-out accuracy
- With a flexible or torsionally rigid coupling for connection of two shafts and to compensate for shaft misalignment

Applications

- Test stands
- Crusher
- Extruder
- General mechanical engineering
- Conveyor technology
- Filling plants

ROBA®-slip hubs: K.123.V .

Technical Data	imone	vione	Size													
Technical Data, D	mens	5015	0	01	1	2	3	4	5	6	7	8	9	10	11	12
Limit torques for overload	M _g	[Nm]	2 – 30	6 – 90	14 - 200	26 – 400	50 – 800	110 – 1600	140 – 2100	240 – 2400	400 - 4000	680 - 6800	1200 – 12000	2000 – 20000	3400 – 34000	5000 – 50000
Operating speed	n _{max}	[rpm]	8500	6600	5600	4300	3300	2700	2200	1900	1600	1300	1100	920	780	690
Outer diameter		[mm]	45	58	68	88	115	140	170	200	240	285	350	415	490	555
Minimum bore		[mm]	7	12	12	15	19	25	30	40	48	60	57	80	90	100
Maximum bore		[mm]	20	22	25	35	45	55	65	80	100	120	140	160	180	200
Length		[mm]	33	45	52	57	68	78	92	102	113	115	162	185	222	250

EAS[®]-torque sensor / EAS[®]-Compact[®]-torque sensor the load holding positive-locking safety clutch

Performance Characteristics

- Emits a signal immediately on overload, but does not separate the masses (no mechanical overload protection) — ideal for vertical applications
- Connects the input and the output via positive locking in all operating conditions fail-safe
- Torque can be adjusted easily and steplessly using the scaled adjusting nut

Installation Example

EAS®-torque sensor with long hub and mounted triple chain sprocket

Designs

- Flange design for mounting bearing-supported drive elements such as chain sprockets, toothed wheels and pulleys
- Design with integrated bearing for simple symmetrical and narrow drive elements.
 Simple, ready-to-mount clutch
- Design with a long hub for wide drive elements (see Installation Example)
- Designs with flexible couplings for connection of two shafts and to compensate for shaft misalignment

Applications

- Vertical drives
- Hoists
- All drives in which separation of the shafts is not permitted

Technical Data and Dimensions							E	Si AS®-torq	ze ue sense	or			
				0	1	2	3	4	5	6	7	8	9
Limit torques for overload		M _G	[Nm]	5 – 40	12 – 100	25 – 200	50 – 400	100 – 800	175 – 1400	300 – 2400	500 – 4000	850 – 6800	1500 – 12000
Maximum speed		n _{max}	[rpm]	6500	4300	3580	3000	2500	2050	1800	1470	1250	920
Outer diameter			[mm]	55	82	100	120	146	176	200	240	285	380
Minimum bore			[mm]	8	11	15	19	25	30	40	50	60	70
Maximum bore [mm]			20	25	35	45	55	65	75	100	120	150	
Length	Flange design		[mm]	38,5	52	61	78	99,5	113,5	119	141	172	190

Technical Data and Dimensions of the special design EAS®-Compact®-torque sensor on request

For detailed technical data and dimensions, please see catalogue EAS®-standard: K.407.V___

ROBA[®]-contitorque the load holding, magnetic safety clutch

Performance Characteristics

- Long-term continuous torque due to magnetic hysteresis principle
- Wear and maintenance-free
- Torques are transmitted contactlessly and synchronously via magnetic forces
- Precise torque limiting on overload
- Torque can be adjusted easily and steplessly using the scale marked with torque values
- Can be used as a clutch or brake
- Low weight and mass moment of inertia

Installation Example

The clutch is secured directly onto the motor shaft and the pulley is bearing-mounted separately using the deep groove ball bearing (used as a clutch for torque limitation).

Designs

- Two torque ranges per construction size for most accurate torque graduation
- □ Rustproof stainless steel design
- □ Sealed; can be used in foodstuffs plants
- Design with rustproof hysteresis-capping head: ROBA[®]-capping head

Applications

- In test stand technology, this device can simulate defined loads
- □ Can be used to screw on closing caps of any kind
- □ Force limitation for coiling and uncoiling procedures
- Torque limitation in different power transmission applications
- □ Rail / switch plate adjustments (railway)

Technical Data and Dimensions			Size										
Technical Data and Dimens	0115		1	2	3	4	5						
Limit torques for overload	M _g	[Nm]	0,1 – 0,8	0,1 – 1,6	0,1 – 3	0,2 - 6	0,5 – 12						
Maximum speed	n _{max}	[rpm]	4000	3500	3000	3000	3000						
Outer diameter		[mm]	62	77	90	113	145						
Minimum bore		[mm]	10	12	15	18	20						
Maximum bore		[mm]	14	20	25	38	50						
Length	[mm]	83	98	110	129	160							

For detailed technical data and dimensions, please see catalogue

ROBA[®]-contitorque: K.150.V__._ ROBA[®]-capping head: P.151000.V__.

EAS[®]-Compact[®] / EAS[®]-NC the load separating ratchetting safety clutch

Performance Characteristics

- Separates immediately, re-engages automatically
- Transmits the torque backlash-free in normal operation
- Separates input and output in milliseconds on overload
- Electrical signal emittance on overload via limit switch
- High switch-off and repeat accuracy
- Torque can be adjusted easily and steplessly using adjustment tables
- Re-engagement every 15° or synchronously after 360°
- High rigidity

Installation Example

The EAS[®]-Compact[®] with a backlash-free, torsionally flexible and vibration-damping shaft coupling for the connection of two shafts. The coupling compensates for axial, radial and angular shaft misalignments.

Designs

- Flange clutches with single or double bearings for direct mounting onto drive elements such as pulleys, toothed wheels and chain sprockets
- Design with a long hub for mounting very wide drive elements. An additional bearing on the hub using a roller bearing or a plain bearing is possible
- Combinations with torsionally rigid or flexible couplings for the connection of two shafts; compensation of shaft misalignment

Applications

- General drive technology
- Automation technology
- Machine tools
- Packing machines
- Printing and paper machines
- Foodstuffs technology
- □ Conveyor technology
- Drink industry

Technical Date	Technical Data and Dimensions						Si	ze			
rechnical Data	a and Dimen	SIONS		03	02	01	0	1	2	3	4
Limit torques for	overload	M _G	[Nm]	0,65 – 3,8	2 – 15	5 - 62,5	10 – 125	20 – 250	40 – 500	70 – 875	120 – 1500
Maximum speed		n _{max}	[rpm]	4000	4000	4000	3000	2500	2000	1200	800
Outer diameter			[mm]	45	50	70	85	100	115	135	166
Minimum bore			[mm]	6	8	10	15	22	28	32	40
Maximum bore [mn		[mm]	12	16	20	25	35	45	55	65	
Length	Flange design		[mm]	28,5	34,5	47	56	67	73	86	130

For detailed technical data and dimensions, please see catalogue EAS®-Compact®: K.490.V__._

EAS®-Compact® rustproof the load separating ratchetting safety clutch

Performance Characteristics

- Separates immediately, re-engages automatically
- Transmits the torque backlash-free in normal operation
- Separates input and output in milliseconds on overload
- High switch-off and repeat accuracy
- Simple torque adjustment
- Re-engagement synchronously after 360°
- Long service lifetime due to hardened functional components
- Use of lubricants with approval for the food industry

EAS®-Compact® rustproof in a filling machine for cream cheese

Designs

- □ Rustproof, open design: EAS®-Compact®-R clutch, completely made of rustproof stainless steel; identical in design with the EAS®-Compact[®] standard
- □ Rustproof, sealed design: EAS®-Compact®-RA clutch, completely rustproof, enclosed due to rustproof seal; no penetration of cleaning liquids or any other media, no grease leakage
- □ Flange clutches with single bearings for direct mounting onto drive elements such as pulleys, toothed wheels and chain sprockets

Applications

- Foodstuffs technology
- Process engineering
- Chemical industry

Technical Data and Dimensions				Size								
Technical Data a				0	1	2	3					
Limit torques for ove	rload	M _G	[Nm]	10 – 100	20 – 200	40 – 400	70 – 700					
Maximum speed		n _{max}	[rpm]	3000	2500	2000	1200					
Outor diamotor	Sealed design		[mm]	90	105	120	140					
Outer diameter	Open design		[mm]	80	95	110	130					
Minimum bore			[mm]	15	22	28	32					
Maximum bore			[mm]	25	35	45	55					
Sealed design			[mm]	64	77	88	98					
Length	Open design		[mm]	56	67	73	86					

12

For detailed technical data and dimensions, please see catalogue EAS[®]-Compact[®]-R: P.49A.V__

EAS[®]-smartic[®] the load separating ratchetting safety clutch

Performance Characteristics

- Separates immediately, re-engages automatically
- Very easy and quick installation via the clamping ring hub by tightening one single screw
- Permanent backlash-free torque transmission
- Good dynamic characteristics
- Economical and reliable
- Simple and safe torque adjustment via a graduation scale with a directly readable torque indication
- Highest possible transmission security due to keyway and clamping ring hub
- High torque range from 6 100 % of the maximum torque
- Adjustment of the different torques possible by re-layering the cup springs already installed without reducing/adding the number of springs

 $EAS^{\circledast}\mbox{-smartic}^{\circledast}$ combined with the backlash-free, torsionally rigid disk pack coupling ROBA $\mbox{-}DS$

Designs

- Flange clutches for direct mounting onto drive elements such as pulleys, toothed wheels and chain sprockets
- Combinations with a backlash-free flexible coupling for the connection of two shafts; compensation of shaft misalignment and damping of critical vibrations
- Combinations with a backlash-free torsionally rigid coupling for the connection of two shafts; compensation of shaft misalignment and high torsional spring rigidity

Applications

- General drive technology
- □ Automation technology
- □ Machine tools
- Packing machines
- Printing and paper machines
- Foodstuffs technology
- Conveyor technology
- Drink industry

Technical Data and Dimensions			Size							
	Dimensions			01	0	1	2			
Limit torques for overloa	ıd	M _g	[Nm]	2,7 – 60	5 – 120	10 – 240	20 – 500			
Maximum speed		n _{max}	[rpm]	3000	3000	2500	2000			
Outer diameter			[mm]	59	72	88	104			
Minimum bore	Flange design,		[mm]	10	14	19	20			
Aaximum bore		[mm]	22	32	42	50				
Length			[mm]	51	56	65	75			

For detailed technical data and dimensions, please see catalogue EAS®-smartic®: K.481.V__.

EAS[®]-HTL the load separating, ratchetting or disengaging safety clutch

Performance Characteristics

- Separates immediately on overload
- Re-engages automatically (ratchetting and synchronous clutch design)
- Slows down freely (overload clutch design)
- EAS[®]-Compact[®] in a housing with IEC or NEMA flanges (housing protection IP53)
- Integrated limit switch for switch-off in case of overload
- Cost-effective, closed unit
- Easy installation due to standardised connection dimensions and short design
- Fail-safe and reliable due to protection against mechanical damage, corrosion, penetration of dirt and washing out of grease
- Solid housing Hanging loads can be attached to it
- Backlash-free torque transmission
- Torque adjustment possible

Designs

- □ Enclosed in an IEC or NEMA flanged housing
- □ Synchronous, ratchetting or overload clutch designs

Applications

- Foodstuffs technology
- Process engineering
- □ Chemical industry

			Size								
Technical Data and Dimensio	ns		Synchronous,	ratchetting clutch	Overload clutch						
			IEC 63 – 180	NEMA 56C - 256TC	IEC 80 – 315	NEMA 56C - 256TC					
Limit torques for overload	M _G	[Nm]	2 - 700	5 – 400	5 – 3000	5 – 400					
Maximum speed	n _{max}	[rpm]	4000	4000	8000	8000					
Outer diameter		[mm]	140 – 350	180 – 250	200 – 550	180 – 250					
Minimum bore			11 mm	0.625 inch	19 mm	0.625 inch					
Maximum bore			48 mm	1.625 inch	75 mm	1.625 inch					
Length			53 – 126 mm	3.070 – 5.280 inch	78 – 252 mm	3.070 – 5.280 inch					

EAS[®]-HSC the load separating disengaging safety clutch

Performance Characteristics

- Separates immediately on overload
- Slows down freely
- Positive locking overload clutch
- Complete separation
- Synchronous re-engagement
- Balanced when completely installed
- Diverse mounting variations
- High torsional rigidity
- High performance density
- Low mass moment of inertia
- High speeds of up to 12000 rpm

 $\ensuremath{\mathsf{EAS}}\xspace^{\ensuremath{\mathsf{BAS}}\xspace^{\ensuremath{\mathsf{BSC}}\xspace}}$ the torsionally rigid disk pack coupling ROBA®-DS

Designs

- Flange design
- Combinations with a torsionally rigid misalignmentflexible all-steel coupling (ROBA®-DS coupling) for the connection of two shafts; compensation of shaft misalignment

Applications

- Test stands
- □ For high-speed applications

Technical Data and Dimensions			Size							
	511510115			01	0	1	2	3		
Limit torques for overload		M _g	[Nm]	5 - 62,5	10 – 125	20 – 250	40 – 500	80 – 1000		
Maximum speed		n _{max}	[rpm]	12000	10000	9000	7000	6000		
Outer diameter			[mm]	70	85	100	115	135		
Minimum bore			[mm]	10	15	22	32	35		
Maximum bore			[mm]	20	25	35	45	55		
Length	Flange design		[mm]	62	76	90	100	112		

For detailed technical data and dimensions, please see catalogue EAS®-HSC/EAS®-HSE: P.4090.V_

EAS[®]-Compact[®] overload clutch the load separating disengaging safety clutch

Performance Characteristics

- Separates immediately on overload
- Slows down freely
- Exact and reproducible responses
- Re-engagement either by hand or via remote control
- Torque can be adjusted easily and steplessly using adjustment tables
- Operation possible with or without limit switch for overload recognition
- Transmits the torque backlash-free in normal operation

Installation Example

 $\mathsf{EAS}^{\circledast}\text{-}\mathsf{Compact}^{\circledast}$ overload clutch with a short hub: The clutch interrupts the transmission between the motor and the toothed belt pulley on overload and remains disengaged.

Designs

- Flange clutch with integrated ball bearing for direct mounting onto drive elements such as pulleys, toothed wheels and chain sprockets
- If requested, a device with a long hub and double mounting bearing for very wide drive elements is available
- Combinations with flexible couplings for the connection of two shafts; compensation of shaft misalignment
- Combinations with a backlash-free torsionally rigid coupling for the connection of two shafts; compensation of shaft misalignment and high torsional spring rigidity

Applications

- General drive technology
- □ Automation technology
- □ Machine tools
- Packing machines
- Printing and paper machines
- □ Foodstuffs technology
- Conveyor technology
- Drink industry

Technical Data and Dimensions				Size								
	Dimensions			01	0	1	2	3	4	5		
Limit torques for overlo	torques for overload		[Nm]	5 – 62,5	10 – 125	20 – 250	40 – 500	80 – 1000	120 – 1500	240 – 3000		
Maximum speed		n _{max}	[rpm]	8000	7000	6000	5000	4000	3500	3000		
Outer diameter			[mm]	70	85	100	115	135	175	225		
Minimum bore			[mm]	10	15	22	32	35	40	45		
Maximum bore Flange design, cone bushing Length			[mm]	20	25	35	45	55	65	85		
		[mm]	52	63	73	81	93	160	193			

EAS[®]-elements the load separating disengaging elements

Performance Characteristics

- Separates immediately on overload
- Slows down freely
- Maximum performance density
- Release forces can be adjusted easily and steplessly
- Simple and fast engagement
- Large number of disengagement actions
- On overload, the entire system can be stopped by a speed monitor

Designs

- EAS[®]-elements for installation in two bearing-supported flanges facing each other or for integration into existing constructions
- □ EAS[®]-HT safety clutch component
- □ For customer-specific constructions
- Rustproof design on request

Applications

- □ Conveyor belts
- □ Crushers
- Rolling mills
- □ Underground mining / mining
- Raw material extraction

Technical Data and Dimensions			Size							
rechnical Data and Dimensions			02	01	0	1	2			
Circumferential force	Fu	[kN]	0,22 – 2,5	1 – 5	1,8 – 38	5 – 75	4 – 150			
Axial force	F _{ax}	[kN]	0,2 – 2,25	0,9 – 4,5	1,62 – 20	4,5 – 40	3,6 – 80			
Outer diameter		[mm]	31,2	41,6	85	110	150			
Length		[mm]	56	77,5	127	163	243			

For detailed technical data and dimensions, please see catalogue EAS®-HT: K.440.V__.__

EAS[®]-HT, short bearing-supported hub the load separating disengaging safety clutch

Performance Characteristics

- Separates immediately on overload
- **Slows down freely**
- **Designed for high torques**
- Robust, long service lifetime
- Individual constructional design according to the customer's requests
- Re-engagement either by hand or via remote control
- Torque can be adjusted easily and steplessly using adjustment tables
- On overload, the entire system can be stopped by a speed monitor

EAS®-HT lastic (EAS®-HT short bearing-supported hub combined with a flexible, positive-locking coupling)

short bearing-supported hub

Designs

- Short bearing-supported hub for direct mounting onto drive elements
- Combination with flexible coupling for the connection of two shafts; damping of impact loads
- Rustproof design on request
- Cold climate clutch design on request (special design, overload protection up to -48 °C)

Technical Data and Dimensions				Size EAS [®] -HT short bearing-supported hub								
				7	8	9	10					
Limit torques for overloa	d	M _G	[kNm] 1,3 – 8 1,6 – 13 4 – 24 5									
Maximum speed		n _{max}	[rpm]	3000	2800	2500	2200					
Outer diameter			[mm]	260	304	380	450					
Bore E	AS®-hub side		[mm]	90	110	135	160					
Length			[mm]	228	270	330	387					

EAS[®]-HT, flange design the load separating disengaging safety clutch

EAS®-HT backlash-free (EAS®-HT flange design combined with a disk pack coupling)

EAS[®]-HT lastic bolt (EAS[®]-HT flange design combined with a flexible, positive-locking coupling)

EAS®-HT curved-tooth clutch (EAS®-HT flange design combined with a curved-tooth coupling)

Designs

- The compact, ready for installation flange design can easily be integrated into the drive line
- Combination with flexible coupling for the connection of two shafts; damping of impact loads
- Combination with a curved-tooth coupling for the connection of two shafts; high misalignment compensation capability, temperature-resistant
- Combination with a backlash-free torsionally rigid coupling for the connection of two shafts; compensation of shaft misalignment and high torsional spring rigidity

Applications

Heavy duty applications; Used for example in

- shovel excavators
- □ dredgers
- turbine construction
- water lock drives
- □ rolling mills
- □ steel plants

Technical Data and Dimension	Size EAS®-HT flange design									
			0	1	2	3	4	5	6	
Limit torques for overload	M _g	[kNm]	7,5 – 15	12,5 – 25	20 – 40	37,5 – 75	70 – 140	125 – 250	220 – 440	
Maximum speed	n _{max}	[rpm]	2000	1750	1500	1250	1000	900	750	
Outer diameter		[mm]	275	320	380	455	545	620	720	
Bore curved-tooth coupling		[mm]	95	130	150	185	210	285	340	
Length		[mm]	226	243	298	312	328	476	485	

For detailed technical data and dimensions, please see catalogue EAS®-HT: K.440.V__.__

EAS[®]-HSE the load separating disengaging safety clutch

Performance Characteristics

- Separates immediately on overload
- Slows down freely
- Positive locking overload clutch
- Complete separation
- Synchronous re-engagement
- Balanced when completely installed
- Diverse mounting variations
- High torsional rigidity
- High performance density
- Low mass moment of inertia
- High speeds of up to 12000 rpm (up to 20000 rpm possible as special design)

Flange design

EAS®-HSE combined with the torsionally rigid disk pack coupling ROBA®-DS

Designs

- Combinations with a torsionally rigid misalignmentflexible all-steel coupling (ROBA®-DS coupling) for the connection of two shafts; compensation of shaft misalignment
- Flange design

Applications

- □ High-torque test stands
- □ For high-speed applications

Technical Data and Dimensions			Size							
Technical Data and Dimensions			02	01	0					
Limit torques for overload	M _G	[Nm]	100 – 1000	325 – 2500	1400 – 8400					
Maximum speed	n _{max}	[rpm]	12000	10000	7000					
Outer diameter		[mm]	125	170	250					
Minimum bore		[mm]	48	47	70					
Maximum bore		[mm]	60	75	120					
Length Flange de	sign	[mm]	142,2	182,4	250					

EAS[®]-dutytorque the load separating disengaging safety clutch

Performance Characteristics

- Separates immediately on overload
- Slows down freely
- High reliability due to robust mechanics
- High switch-off and repeat accuracy
- Simple and fast re-engagement
- Can be disassembled radially without moving the motor
- High balance quality
- Extensive adjustable torque ranges
- Large shaft bores
- Long service lifetime
- Separable shaft coupling
- Minimum maintenance requirements
- Compact design

Designs

- Disengaging safety clutch with a mounted, plug-in elastomer compensating coupling for connection of two shafts and to compensate for shaft misalignment
- Disengaging safety clutch without attachment (overload module)

Applications

Extruder

The operating conditions for extruders place maximum demands on drive systems: Only special, optimised clutches for torque limitation, such as the EAS[®]-dutytorque, guarantee reliable protection in case of overload.

Technical Data and Dimensions		Size									
			2	3	4	5	6	7	8	9	
Limit torques for ov	verload	M _g	[Nm]	70 – 1400	70 – 1400	150 – 2800	150 – 4000	150 – 5600	800 – 9000	800 – 12000	800 – 17000
Maximum speed		n _{max}	[rpm]	3500	3000	3000	2750	2500	2250	2000	1750
Outer diameter			[mm]	194	214	240	240	265	330	330	370
EAS®-hub side			[mm]	90	90	120	120	120	140	140	140
Flexi	Flexible side		[mm]	85	95	95	100	115	130	135	160
Length			[mm]	368	381,5	472	510,5	512,5	636	654,5	685

For detailed technical data and dimensions, please see catalogue EAS®-dutytorque: K.4043.V__.

EAS[®]-Sp the load separating switchable and controllable safety clutch

Performance Characteristics

- Separates immediately on overload at the controlled switch-off torque
- Pneumatically switchable and controllable
- Synchronous coupling after each full turn
- High switch-off and repeat accuracy
- Torque can be steplessly adjusted via compressed air
- Optimum torque adaptation possible in every production process phase
- Application-tailored switching and control devices for optimum use of function and performance range

EAS[®]-Sp clutch mounted onto the shaft end: The clutch is axially secured via a cone bushing and allows a backlash-free torque connection from shaft to hub.

Designs

- Pneumatic clutch with steplessly adjustable torque using the amount of air pressure
- Flange clutches with two integrated ball bearings for direct mounting onto drive elements such as pulleys, toothed wheels and chain sprockets
- Combinations with a torsionally rigid flexible coupling for the connection of two shafts; compensation of shaft misalignment
- Designed for automated machines with changing operating conditions or changing cycle sequences and speeds

Applications

- □ Filling machines
- Printing machines
- Packing machines
- Conveyor technology

Technical Data and Dimonsions		Size								
			01	0	1	2	3	4	5	
Limit torques for overload	Mg	[Nm]	4 -	15 – 75	25 -	50 – 200	100 -	200 -	500 -	
		ũ		40	75	150	200	500	1000	2000
Maximum speed		n _{max}	[rpm]	5000	4000	2500	2000	2000	1500	500
Outer diameter			[mm]	76	90	115	130	160	200	285
Minimum bore	Element designs		[mm]	10	12	15	20	20	25	38
Maximum bore	Flange design,		[mm]	20	22	35	42	50	65	95
Length	Keyway		[mm]	87	105	126	135	153	185	260

For detailed technical data and dimensions, please see catalogue EAS®-Sp/EAS®-Sm/Zr: K.406.V__

Installation Example

EAS[®]-Sm / EAS[®]-Zr the load separating switchable and controllable safety clutch

Performance Characteristics

- Separates immediately on overload at the controlled switch-off torque
- Electrically switchable and controllable
- Synchronous coupling after each full turn on EAS[®]-Sm
- Coupling in 15°-steps on EAS[®]-Zr
- High switch-off and repeat accuracy
- Torque can be steplessly adjusted via current
- Optimum torque adaptation possible in every production process phase
- Application-tailored switching and control devices for optimum use of function and performance range

Installation Example

 EAS^{\odot} -Sm with torsionally rigid flexible all-steel coupling positioned between the motor and the gearbox. When the clutch disengages, the armature disk moves axially and operates the limit switch.

Designs

- Electromagnetic clutch with steplessly adjustable torque using the current
- Flange clutches with two integrated ball bearings for direct mounting onto drive elements such as pulleys, toothed wheels and chain sprockets
- $\hfill\square$ Design with cover for dusty and dirty operation areas
- Combinations with a torsionally rigid flexible coupling for the connection of two shafts; compensation of shaft misalignment
- Designed for automated machines with changing operating conditions or changing cycle sequences and speeds

Applications

- Filling machines
- Printing machines
- Packing machines
- Conveyor technology

Technical Data and Dimensions			Size								
				01	1	2	3	4			
Limit torques for ov	erload	M _G	[Nm]	6 – 25	12 – 50	25 – 100	50 – 200	100 – 375			
Maximum speed		n _{max}	[rpm]	4000	3000	2500	2000	2000			
Outer diameter			[mm]	115	135	155	180	210			
Minimum bore			[mm]	9	14	19	22	24			
Maximum bore	Flange design,		[mm]	22	35	42	50	60			
Length	Keyway		[mm]	100	110	125	140	155			

For detailed technical data and dimensions, please see catalogue EAS®-Sp/EAS®-Sm/Zr: K.406.V_

EAS[®]-axial the load separating safety clutch for linear movements

Performance Characteristics

- Separates immediately on overload
- Re-engages synchronously
- Transmits the forces backlash-free up to the adjusted release force
- High axial rigidity

Installation Example

- Reliably limits tensile and compressive forces
- Re-engages automatically exactly at the place of disengagement
- Free stroke in both tensile and compressive direction can be defined by the user
- Release force can be steplessly adjusted

Designs

Flexible modular form for optimum adaptation of the protective elements to the respective application

Applications

- □ In cam-controlled feed drives
- □ As a torque support for shaft-mounted gearboxes
- □ As a force limiter in a crank drive

Technical Data and Dimensions			Size								
			1	2	3	4	5	6	7	8	
Release forces	$\mathbf{F}_{\mathbf{A}}$	[kN]	0,075 - 0,8	0,2 - 2	0,3 - 5	0,6 - 12	3 - 30	6 - 70	12 - 150	30 - 300	
Free stroke (in tensile and/or compressive direction)		[mm]	200	300	400	500	600	700	800	1000	
Outer diameter		[mm]	30	37	48	68	95	120	160	240	
Length Basic element		[mm]	52	75	95	130	190	230	350	460	

Limit Switch

Type 055.00_.5

contactless actuation

Installation example

Characteristics

- Registration of axial and radial disengagement movements
- · Either internal or external NAMUR sensor
- Floating contacts
- Adjustable zero point
- Robust light metal housing

Detail drawing

Approvals

contactless actuation

Type 055.012.6

Man

Installation example

Characteristics

- Registration of axial disengagement movements
- PNP NO contact
- Cost-effective

Detail drawing

Approvals

Limit Switch

Type 055.000.5

mechanical actuation

SW 7

Installation example

Characteristics

- Registration of axial disengagement movements
- Adjustable zero point
- Robust light metal housing

Detail drawing

Approvals

CE

Туре 055.010.6

Installation example

mechanical actuation, multi-directional

Characteristics

- Registration of axial and radial disengagement movements
- Positive opening contacts ⊖

Detail drawing

Approvals

Product Summary

EAS[®]-Compact[®]/EAS[®]-NC

Safety Clutches/Overload Clutches

- Positive locking and completely backlash-free torque limiting clutches
 EAS®-smartic®
 Cost-effective torque limiting clutches, quick installation
 EAS®-element clutch/EAS®-elements
 Load-disconnecting protection against high torques
 EAS®-axial
 Exact limitation of tensile and compressive forces
 EAS®-Sp/EAS®-Sm/EAS®-Zr
 Load-disconnecting torque limiting clutches with switching function
 ROBA®-slip hub
 Load-holding, frictionally locked torque limiting clutches
 ROBA®-contitorque
- Magnetic continuous slip clutches **EAS®-HSC/EAS®-HSE** High-speed safety clutches for high-speed applications

Shaft Couplings

- smartflex[®]/primeflex[®] Perfect precision couplings for servo and stepping motors
 ROBA[®]-ES
- Backlash-free and damping for vibration-sensitive drives **ROBA®-DS/ROBA®-D**
- Backlash-free, torsionally rigid all-steel couplings **ROBA®-DSM**
 - Cost-effective torque-measuring couplings

Electromagnetic Brakes/Clutches

- ROBA-stop[®] standard Multifunctional all-round safety brakes
 ROBA-stop[®]-M motor brakes
- Robust, cost-effective motor brakes
- ROBA-stop[®]-S
 Water-proof, robust monoblock brakes
- ROBA-stop[®]-Z/ROBA-stop[®]-silenzio[®]
 Doubly safe elevator brakes
- ROBA[®]-diskstop[®]
 Compact, very quiet disk brakes
- ROBA[®]-topstop[®]
 Brake systems for gravity loaded axes
- ROBA[®]-linearstop Backlash-free brake systems for linear motor axes
- ROBA[®]-guidestop Backlash-free holding brake for profiled rail guides
- ROBATIC[®]/ROBA[®]-quick/ROBA[®]-takt Electromagnetic clutches and brakes, clutch brake units

DC Drives

tendo[®]-PM Permanent magnet-excited DC motors

Headquarters

Chr. Mayr GmbH + Co. KG Eichenstraße 1, D-87665 Mauerstetten Tel.: +49 83 41/8 04-0, Fax: +49 83 41/80 44 21 www.mayr.com, E-Mail: info@mayr.com your reliable partner

Service Germany

Baden-Württemberg Esslinger Straße 7 70771 Leinfelden-Echterdingen Tel.: 07 11/45 96 01 0 Fax: 07 11/45 96 01 10

Hagen Im Langenstück 6 58093 Hagen Tel.: 0 23 31/78 03 0 Fax: 0 23 31/78 03 25

Branch office

China

Mayr Zhangjiagang Power Transmission Co., Ltd. Fuxin Road No.7, Yangshe Town 215637 Zhangjiagang Tel.: 05 12/58 91-75 67 Fax: 05 12/58 91-75 66 info@mayr-ptc.cn

Singapore Mayr Transmission (S) PTE Ltd. No. 8 Boon Lay Way Unit 03-06, TradeHub 21 Singapore 609964 Tel.: 00 65/65 60 12 30 Fax: 00 65/65 60 10 00 info@mayr.com.sg

Representatives

Australia

Regal Beloit Australia Pty Ltd. 19 Corporate Ave 03178 Rowville, Victoria Australien Tel.: 0 3/92 37 40 00 Fax: 0 3/92 37 40 80 salesAUvic@regalbeloit.com

Poland

Wamex Sp. z o.o. ul. Pozaryskiego, 28 04-703 Warszawa Tel.: 0 22/6 15 90 80 Fax: 0 22/8 15 61 80 wamex@wamex.com.pl **Bavaria** Eichenstraße 1 87665 Mauerstetten Tel.: 0 83 41/80 41 04 Fax: 0 83 41/80 44 23

Kamen Lünener Straße 211 59174 Kamen Tel.: 0 23 07/23 63 85 Fax: 0 23 07/24 26 74

Great Britain Mayr Transmissions Ltd. Valley Road, Business Park Keighley, BD21 4LZ West Yorkshire Tel.: 0 15 35/66 39 00 Fax: 0 15 35/66 32 61 sales@mayr.co.uk

Switzerland Mayr Kupplungen AG Tobeläckerstraße 11 8212 Neuhausen am Rheinfall Tel.: 0 52/6 74 08 70 Fax: 0 52/6 74 08 75

info@mayr.ch

National Engineering

Bhosari Pune 411026

Tel.: 0 20/27 13 00 29

Fax: 0 20/27 13 02 29

nenco@nenco.org

Mayr Korea Co. Ltd.

77-1, SungSan-Dong,

Tel.: 0 55/2 62-40 24

Fax: 0 55/2 62-40 25

info@mayrkorea.com

Room No.1002, 10th floor,

Nex Zone, SK TECHNOPARK,

SungSan-Gu, Changwon, Korea

South Korea

Company (NENCO)

J-225, M.I.D.C.

India

Chemnitz Bornaer Straße 205 09114 Chemnitz Tel.: 03 71/4 74 18 96 Fax: 03 71/4 74 18 95

North Schiefer Brink 8 32699 Extertal Tel.: 0 57 54/9 20 77 Fax: 0 57 54/9 20 78

France Mayr France S.A.S.

Z.A.L. du Minopole Rue Nungesser et Coli 62160 Bully-Les-Mines Tel.: 03.21.72.91.91 Fax: 03.21.29.71.77 contact@mayr.fr

USA Mayr Corporation

Japan

10 Industrial Avenue Mahwah NJ 07430 Tel.: 2 01/4 45-72 10 Fax: 2 01/4 45-80 19 info@mayrcorp.com

MATSUI Corporation

Tel.: 03/35 86-41 41

Fax: 03/32 24 24 10

k.goto@matsui-corp.co.jp

German Tech Auto Co., Ltd.

No. 28, Fenggong Zhong Road,

Taichung City 429, Taiwan R.O.C.

2-4-7 Azabudai

Tokyo 106-8641

Shengang Dist.,

Tel.: 04/25 15 05 66

Fax: 04/25 15 24 13

abby@zfgta.com.tw

Minato-ku

Taiwan

Franken

Unterer Markt 9 91217 Hersbruck Tel.: 0 91 51/81 48 64 Fax: 0 91 51/81 62 45

Rhine-Main

Hans-Böckler-Straße 6 64823 Groß-Umstadt Tel.: 0 60 78/7 82 53 37 Fax: 0 60 78/9 30 08 00

Italy

Mayr Italia S.r.I. Viale Veneto, 3 35020 Saonara (PD) Tel.: 0498/79 10 20 Fax: 0498/79 10 22 info@mayr-italia.it

Netherlands

Groneman BV Amarilstraat 11 7554 TV Hengelo OV Tel.: 074/2 55 11 40 Fax: 074/2 55 11 09 aandrijftechniek@groneman.nl

Czech Republic

BMC - TECH s.r.o. Hviezdoslavova 29 b 62700 Brno Tel.: 05/45 22 60 47 Fax: 05/45 22 60 48 info@bmc-tech.cz

More representatives:

Austria, Belgium, Brazil, Canada, Denmark, Finland, Greece, Hongkong, Hungary, Indonesia, Israel, Luxembourg, Malaysia, New Zealand, Norway, Philippines, Romania, Russia, Slovakia, Slovenia, South Africa, Spain, Sweden, Thailand, Turkey

You can find the complete address for the representative responsible for your area under www.mayr.com in the internet.

01/09/2016 SC/GC